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We give an elementary demonstration of the extinction theorem for electromagnetic waves at
normal incidence on a plane surface of a medium. We stress that the extinction of the incident wave
and its replacement with a wave of index of refraction n takes place throughout the medium rather
than in the surface layers. Although the extinction theorem is usually thought to apply only to
dielectrics, we extend the theorem to include conductors. We use the macroscopic fields in which
the contributions of the oscillating dipoles in a dielectric or the induced currents in a conductor are
already summed. Our elementary derivation of the extinction theorem should be readily accessible
to advanced undergraduates since it depends only on the superposition principle and the solution of
the wave equation. An analogy is made between this extinction and the cancellation of the electric
field inside a conductor placed in a static electric field. We also study the more advanced case of
propagation of radiation in a dilute random medium in which the wavelength is small relative to the
interparticle distance and find that an analogous extinction of the incident wave takes place.
Furthermore, for the dilute random medium, we estimate the length into the medium for which a
large fraction, (121/e), of the incident radiation has interacted with the particles making up the
medium. This length is much larger than any lengths associated with the extinction theorem itself.
© 1999 American Association of Physics Teachers.

I. INTRODUCTION

It is well known that the speed of light in a medium is
given by c/n where n is the index of refraction of the me-
dium. This is usually shown by solving the wave equation in
which the macroscopic electric and magnetic fields are al-
ready the superposition of the incident wave and the radia-
tion of the oscillating atoms that make up the medium. The
interference of these two components is not manifest but was
demonstrated by Ewald and Oseen in their famous extinction
theorem.1 They showed that, inside a dielectric, the radiation
from the atoms exactly cancels the electromagnetic field of
the incident wave and replaces it by a field corresponding to
a wave with speed c/n .
Unfortunately, their calculation is not readily accessible to

undergraduates because of the advanced mathematics ~a typi-
cal derivation involves three-dimensional Green’s functions,
electromagnetic radiation theory, and the resolution of an
integral equation!. Over the years many papers2–8 have ap-
peared in this journal on the extinction theorem, transmission
and reflection, and the index of refraction. Perhaps the most
ambitious is the paper by Fearn et al.2 who show that, in a
dielectric continuous on the scale of a wavelength, the ex-
tinction of the incident wave and its replacement with a wave
of index of refraction n takes place throughout the medium
rather than in the surface layers. They accomplished this by
showing that the near, intermediate, and far fields of the os-
cillating dipoles superimpose to give waves traveling in the
forward and backward directions only. This is very satisfy-
ing. On the other hand, the extinction theorem is about mac-
roscopic fields and it is not necessary to explicitly sum the
complicated microscopic fields. In Sec. II, we show in a
remarkably simple way how the extinction follows directly
from the wave equation for the macroscopic fields and the
superposition principle. That the fields of the oscillating di-

poles give such traveling waves is implicit in our work, that
is, the contributions of all the dipoles are automatically
summed in the macroscopic fields. The idea of our approach
is to separate the various sources that produce the electro-
magnetic field, solve Maxwell equations separately for the
field of each source, and, finally, superimpose the resulting
fields.
To avoid unnecessary complications, we consider the

simple situation of an electromagnetic wave of pure fre-
quency at normal incidence on a medium filling half the
space ~the region z>0!. The electric field at a point in space
is the sum of the electric fields due to all the various sources.
In our situation, we can separate the sources into two groups:
first the sources external to the medium that produce the
incident wave and second the radiating atoms making up the
medium. We denote the contribution to the electric field due
to the external sources by Evac(z ,t). This is, of course, the
electric field of the incident wave traveling to the right in the
positive z direction. This contribution to the electric field is
present everywhere in space, outside the medium as well as
deep inside. The electric field produced by the radiation of
all the atoms in the medium constitutes the other contribution
and we refer to it as the ‘‘radiation field’’ Erad(z ,t). The
resulting electric field at z is just the superposition9

E
~

z ,t !5Evac~z ,t !1Erad~z ,t !. ~1!

With this notation, the extinction theorem states that the ra-
diation field in the medium is equal to

Erad~z ,t !52Evac~z ,t !1ET~z ,t !, ~2!

that is, the radiation field exactly cancels the incident wave
and creates a new or transmitted wave, ET(z ,t), traveling at
speed c/n within the medium. Outside the medium (z,0),
the radiation field takes the form of a wave traveling at speed
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c in the direction opposite to the incident wave and corre-
sponds to the reflected wave.
The same principle of superimposing the fields due to the

various sources can be used, for example, in the description
of the electric field inside and outside a conductor placed in
a uniform static electric field. Assuming that the charges in-
duced on the surface of the conductor do not disturb the
distant charges producing the uniform field, the electric field
at a given point in space is the sum of the uniform electric
field plus the field produced by the surface charge density
induced on the sphere. Outside the conductor, the resulting
electric field is nonuniform, but, inside the conductor, the
two contributions to the field sum to zero. Interestingly, we
calculate the electric fields due to the induced charges as if
there were no medium, that is, the governing equations are
Maxwell’s equations in vacuum. Similarly, the uniform elec-
tric field is the same with or without the conductor under the
assumption that the charges producing the uniform electric
field are not disturbed by the introduction of the conductor.
This follows directly from the linear relationship between the
electric field and its sources as expressed in the differential
form of Gauss’ law,

e0π–E
~

r !5r

~

r !. ~3!

Notice the broad meaning10 we give to the word sources.
Here we take the fields E and B to be fundamental and the
source terms to include not only the true charges and cur-
rents but also induced quantities. These may include the
fields themselves and their time derivatives such as polariza-
tion charges and currents. Some11 would restrict the term
‘‘source’’ to the primary cause or origin, presumably those
charges and currents over which one has direct control. Max-
well’s equations supplemented by the constitutive relations
can be solved with just this information alone, but such a
limitation is too constraining for our purposes and for many
applications.
For the conductor placed in a uniform static electric field

we can therefore say that the induced charges produce an
electric field that exactly cancels the original uniform field
everywhere within the conductor. This ‘‘extinction’’ of the
field within the conductor is an electrostatic analog of the
extinction of the vacuum wave by the radiation field.
There can be some confusion about the word extinction as

it is used in the literature. For example, Jackson12 argues that
the incident wave cannot be extinguished immediately when
entering the medium, but only after an ‘‘extinction dis-
tance.’’ This may suggest the incorrect idea that the extinc-
tion theorem refers to the incident wave being absorbed and
re-emitted by layers of the medium nearest the surface with
the re-emitted wave as the new wave traveling at the speed
c/n . What we mean by extinction is that the incident wave
produced by the external sources is canceled everywhere
within the medium by the induced radiation fields, just as the
uniform electric field is canceled everywhere within the con-
ductor by the induced charges. In the usual macroscopic
model in which matter is taken to be continuous, the extinc-
tion is perfect even at the surface. More on this later.
The extinction theorem is usually thought to apply only to

dielectrics, but the physics is the same for radiation incident
on other media, such as a conductor or a plasma, where again
the radiation fields interfere with the incident wave. We will
see that in a conductor, the radiation fields cancel the
vacuum wave, leaving a transmitted wave with an amplitude
decaying exponentially with distance. To include these me-

dia in our derivation, we will speak of the radiation produced
by induced currents in the medium. In a dielectric these cur-
rents would be polarization currents ~collective oscillations
of the atoms! and in a conductor they would be true currents.
In the next section we follow the procedure described above
to demonstrate the extinction theorem for a continuous me-
dium.
In Sec. III we write the solution of the wave equation as an

integral equation in which the response of the medium is
given by a single term. This integral equation can be easily
compared to earlier work.
In Sec. IV we treat a dilute random medium by looking at

the scattering of the individual particles that make up the
medium. Here the wavelength is less than the interparticle
distances and the radiation fields are incoherent except in the
forward scattering direction. Although the extinction theo-
rem is usually thought to apply only to a continuous dielec-
tric medium with well-defined boundaries, we find that an
analogous extinction also takes place in this case of a dilute
random medium.
In Sec. V, scattering in a dilute random medium is used to

discuss three meanings of extinction length.

II. ELEMENTARY DEMONSTRATION OF THE
EXTINCTION THEOREM FOR NORMAL
INCIDENCE

Consider a plane monochromatic electromagnetic wave
impinging normally on a uniform isotropic medium filling
the half-space z>0. Let the z axis point in the direction of
propagation and assume that the wavelength is much larger
than the average separation of atoms so that the medium can
be considered continuous. We use the usual macroscopic E
and B fields and take the medium to be nonmagnetic and
neutral so that Maxwell’s equations read

π–E50 ~4a!

π–B50 ~4b!

π3E52]B/]t ~4c!

π3B5m0J1e0m0]E/]t . ~4d!
Here J includes the true and polarization currents induced in
the medium but no magnetization current. We assume a lin-
ear relationship between the current and the electric field as
expressed by Ohm’s law with conductivity s,

J5sE. ~5!
This current density will be a source of the radiation fields.
Since the current density J can be out of phase with respect
to E, we allow E, J, and s to be complex in the usual way,
with the understanding that only the real part of the fields has
physical significance.
Since Eqs. ~4! are linear in the fields, their solution can be

written as the superposition,
E5Evac1Erad , B5Bvac1Brad , ~6!

where
π–Erad50, ~7a!

π–Brad50, ~7b!

π3Erad52]Brad /]t , ~7c!

π3Brad5m0J1e0m0]Erad /]t , ~7d!
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and a second set of Maxwell’s equations with no current
density for the vacuum fields. Note that these two sets of
Maxwell’s equations are coupled since the vacuum field ap-
pears in the current density. It should be noted that the de-
composition of the E and B fields into a sum of ‘‘contribu-
tions’’ is, to a certain extent, arbitrary since any source can
be added to one set of equations and subtracted from the
other. We chose our decomposition so that the fields labeled
‘‘vac’’ satisfy the wave equation in vacuum and can there-
fore be identified with the fields of the incident wave for z
,0. For a monochromatic wave at normal incidence, the
vacuum wave takes the form

Evac~z ,t !5Evac exp @

i
~

kz2vt !# , ~8!

for all z with k5v/c .
The remaining contribution to the electric field, Erad , has

its origin entirely in the medium. The source associated with
these fields is the current density J which represents the os-
cillating charges of the atoms or the moving electrons in a
conductor. Applying the curl to Eq. ~7c! and substituting Eq.
~7d! gives

π3π3Erad52]

~

m0J1m0e0]Erad /]t !/]t , ~9!

where, for fields restricted to Cartesian components, the
triple cross product reduces to

π3π3Erad52π

2Erad1π„π–Erad) . ~10!

Since all the fields have the same time dependence,
exp

@

2ivt
#

, the time derivatives in Eq. ~9! are easily done.
Then from Eqs. ~7a! and ~10!, we see that the radiation field
satisfies the following inhomogeneous wave equation,

π

2Erad1m0v
2
~

e01is/v!Erad52im0vsEvac~z !, ~11!

where the right-hand side is given. From inspection, a par-
ticular solution to this equation is

Erad
P 52Evac~z !. ~12!

For the complete solution we need to add to this particular
solution the general solution of the homogeneous equation,
that is, a superposition of plane waves traveling in arbitrary
directions,13

~

Erad
c

! i5E gi~u ,f! exp ~

ik8•r! dV , ~13!

where u and f are the polar and azimuthal angles of k8 and
dV is the element of solid angle. The subscript i stands for
the Cartesian components. The magnitude of k8 is given by

k825m0e0v
2S 11i

s

e0v
D . ~14!

Note that we have taken the solution as a coherent superpo-
sition of plane waves. This will certainly be true for the cases
where the medium can be treated as continuous since the
radiation fields from the various elements of the medium will
arrive at a given point with a definite phase relationship
which does not change with time. The same cannot be said
for a gaseous medium because of fluctuations. More on this
in Sec. IV.
Because of symmetry, the fields should be the same at all

points in a plane perpendicular to the z axis. Hence,

k8•a50, ~15!

where a is a displacement in the x-y plane perpendicular to
the z axis. Furthermore, since there are no boundaries to the
right, we expect waves traveling only to the right. The solu-
tion to the homogeneous equation will be the transmitted
wave,

Erad
c 5ET exp ~

ik8z !. ~16!
Adding this to the particular solution given in Eq. ~12! gives

Erad52Evac~z !1ET exp ~

ik8z ! ~17!
for the solution of the radiation fields. Adding this to the
vacuum field gives the final result for the field within the
medium,

E
~

z !5ET exp ~

ik8z !. ~18!
This remarkably simple demonstration shows that the ra-

diation field contribution to the electric field has the effect of
canceling the incident wave Evac exp (ikz) and of creating a
new wave ET exp (ik8z) traveling at speed c/n , where

n5ck8/v5A11i
s

e0v
. ~19!

This extinction and replacement with a new wave is often
described as the interference between the radiation field
given by Eq. ~17! and the incident wave.
To find the usual formula for the index of refraction of a

linear isotropic dielectric, we need to write the conductivity
of the dielectric as a function of its susceptibility xe . In such
a dielectric, an electric field E will induce a dipole moment
per unit volume proportional to the electric field, P
5e0xeE. When the electric field changes, the induced
charges move and produce a volume current density ~polar-
ization current! given by ]P/]t . Since the electric field of the
wave has the time dependence exp

@

2ivt
#

, we obtain

J52ie0vxeE, ~20!
which gives the conductivity,

s52ie0vxe . ~21!
Finally, substitution of this conductivity into Eq. ~19! gives

n5A11xe, ~22!
the index of refraction in terms of the susceptibility. In a
conductor, s is real and positive so that the index of refrac-
tion has a nonzero imaginary part; the transmitted wave de-
cays exponentially with distance as can be seen from Eqs.
~18! and ~19!.
For z,0 where s50 the solution of Eq. ~11! is easily

seen to be
Erad~z !5ER exp ~

2ikz !, ~23!
where we have imposed the condition of a traveling wave to
the left. This will be the reflected wave. The amplitudes of
the reflected and the transmitted waves can be related to the
incident amplitude by applying the usual boundary condi-
tions at the interface14 to obtain the Fresnel relations for
normal incidence.
In conclusion, we have shown explicitly, for the case of

normal incidence on a homogeneous and isotropic medium,
how the extinction of the vacuum wave follows directly from
the solution of the wave equations for the macroscopic fields,
with the contribution of the medium treated separately. The
result is independent of the boundary conditions at z50 and
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also independent of the direction of propagation of the re-
sulting waves within the medium. Notice that if the dielectric
medium is of finite thickness, waves within the medium will
travel in the negative as well as the positive z rection.

III. THE INTEGRAL SOLUTION

In order to compare our elementary presentation to the
traditional approach, we recast the wave equation,

d2

dz2 E~

z !1m0e0v
2E

~

z !52ivm0s~

z !E~

z !, ~24!

into an integral equation. Here the electric field is the total
electric field as given in Eq. ~1!. Setting s(z)50 gives what
we will call the homogeneous equation. Notice that for z>0
this equation describes the transmitted wave within the me-
dium. In this region s(z) is the constant s and for z,0 it is
zero. Next we write the solution to this wave equation for all
z as an integral equation by using a Green’s function defined
by

S d2dz2 1k2DG~

z ,z8!5d

~

z2z8!. ~25!

This Green’s function can be constructed in terms of two
independent solutions to the homogeneous equation,15 for
example, exp (ikz) and exp (2ikz). We take

G
~

z ,z8!5 HC exp @

ik
~

z2z8!#

, z.z8,
C exp

@

ik
~

z82z !# , z,z8, ~26!

which is continuous at z5z8. Here we have imposed the
boundary condition that G(z ,z8) be an outgoing wave for z
large, the same condition as we demand for the solution. C is
a constant determined so that the first z derivative of the
Green’s function has a unit step at z5z8. We find that

C5
1
2ik . ~27!

It is easy to see that a particular solution to the wave equa-
tion is

EP
~

z !52ivm0sE
0

`

G
~

z ,z8!E~

z8! dz8, ~28!

by applying the operator
d2

dz2 1k2 ~29!

to both sides. On the right the operator goes under the inte-
gral sign and operates on the Green’s function to give a d

function or, alternatively, the integral can be done by parts.
Notice that this particular solution can be interpreted as the
contribution of the medium since it is proportional to s. For
the complete solution we must add the solution of the homo-
geneous equation such that for large positive z we have only
outgoing waves while for large negative z we have incoming
and outgoing waves. The solution is

E
~

z !5Evac exp ~

ikz !

2vm0
s

2k E0
`

exp
~

ikuz2z8u!E~

z8! dz8. ~30!

For z>0 this gives the transmitted wave ET while for z,0
this gives the incident wave Evac plus the reflected wave.

For a dielectric, the integral in Eq. ~30! is interpreted as
the contribution to the radiation fields by the induced oscil-
lations of the dipoles making up the medium. This is exactly
the same result as obtained by Fearn et al.2 who, as men-
tioned earlier, summed the complicated dipole fields. Obvi-
ously one can use Maxwell’s equations to find the fields of
an oscillating dipole first and then sum over the medium or
solve Maxwell’s equations directly for the continuous source
of dipoles that make up the medium. This latter procedure
automatically sums the dipole fields. The reader is referred to
the work of Fearn et al.2 for the details of the solution of the
integral equation. This solution demonstrates the extinction
theorem.

IV. A DILUTE RANDOM MEDIUM

It is usually thought that the extinction theorem is re-
stricted to continuous media where the wavelength is much
larger than the interparticle spacing. In this section we find
that an analogous extinction takes place in a dilute medium
where the wave length is much smaller than the interparticle
distances. We investigate the scattering of light traveling
through a medium of many randomly distributed particles
such as a dilute gas. We start with a truly microscopic ap-
proach since we will consider the scattering of each of the
particles that make up the medium. But then we sum over a
large volume to get the macroscopic fields. We follow the
analysis of Roger Newton in his book16 on scattering theory
where many of the details can be found.
The waves scattered by the particles in directions other

than forward are incoherent since they come from a random
distribution of scattering centers which changes with time.
Thus the intensities add rather than the amplitudes so that
energy is scattered out of the beam. Compare this with the
continuous medium studied in Sec. II where waves scattered
in directions other than forward interfere destructively so
that all the scattered radiation goes in the forward direction.
It should be noted in passing that energy can be scattered

out of the beam coherently if the scattering centers are in an
orderly arrangement, for example, as in x-ray diffraction. We
do not consider such cases here.
As in the case of the continuous medium, we will consider

the random medium to fill the half-space z>0 and to be
isotropic and homogeneous on some scale. The incident
plane wave travels in the positive z direction. Furthermore,
we will consider scattering only in the forward direction
where the scattering is coherent. The coherence follows from
consideration of the waves arriving at a field point
(x0 ,y0 ,z0) from a particle with the same coordinates x0 and
y0 but with z,z0 . Careful consideration shows that chang-
ing the z coordinate of the scatterer does not change the
phase of the waves arriving at the field point; that is, waves
arriving at the field point from various scatterers at different
z’s but approximately the same x0 and y0 will be in phase.
For the scattering, we take the asymptotic form of the fields
to be an incoming polarized plane wave and a spherical out-
going wave,

E
~

z !'E0 exp ~

ikz !1Escat exp ~

ikr !/r . ~31!
For scattering in the forward direction, we assume the polar-
ization to be unchanged. Then the scattered wave is propor-
tional to the incident wave,

Escat5 f
~

0 !E0 , ~32!
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where f (0) is the forward scattering amplitude.
Following Newton, we take the interparticle distance, D,

to be very large with respect to the particle size, R, so that
multiple scattering can be neglected. Furthermore, the inter-
particle distance is taken to be much larger than the wave-
length of the radiation. This last condition assures us that we
only need to consider the radiation fields of the oscillating
dipoles that make up the medium. Newton takes a slab of
material of thickness dz which is infinitesimal in that the
beam does not change appreciably in traversing dz yet large
enough to contain many particles, that is, dz is much larger
than the interparticle distance but much smaller than the
length of a column of particles for which the sum of the
cross-sectional areas of the particles equals the cross-
sectional area of the column. Now consider a field point that
is a distance d from the slab. This distance is taken small
compared to the thickness of the slab but still large compared
to the interparticle distance, that is,

D!d!dz . ~33!

As described by Newton, the medium looks continuous and
the field point lies on the surface of the infinitesimal slab dz
under a microscope of ‘‘intermediate’’ power.
Next we must sum the contributions at the field point from

the particles that make up the slab. Only those particles
within a narrow cone perpendicular to the slab with apex at
the field point a distance d from the slab contribute to the
electric field at that point. The result is

E
~

z !5E0 exp ~

ikz !12piNk21dz f
~

0 !E0 exp ~

ikz !, ~34!

where N is the density of particles. For the details of this
calculation we refer the reader to Newton’s book.16
The scattering described by Eq. ~34! takes place through-

out the medium so that the amplitude factor of the incident
wave, E0 , will depends on z. To account for this, we write
the amplitude as A(z) and take A(0)5E0 , the amplitude of
the wave incident at z50. In the thickness of the slab, the
amplitude has changed by

dA
~

z !52piNk21dz f
~

0 !A~

z !. ~35!

If the forward scattering amplitude f (0) were real, then the
change in the wave is purely imaginary. In that case the
intensity of the wave is not attenuated as it travels through
the medium. Integrating Eq. ~35! gives

A
~

z !5E0 exp @

2piNk21 f
~

0 !z# , ~36!

so that

E
~

z !5E0 exp ~

inkz !, ~37!

where the index of refraction is

n5112pNf
~

0 !/k2. ~38!

These equations clearly show that it is the interference of the
scattered wave ~radiation fields! and the incident wave that
produces the refracted wave.
We can calculate the index of refraction for the dilute gas

by using the simple model of an atom as an ion with an
electron attached by a linear restoring force of strength
m(v0)2. The scattering amplitude can easily be obtained
from the radiation fields of an oscillating dipole,

Escat5@~

k3p0!3k
#

exp
~

ikr !
4pe0r

, ~39!

where the amplitude of the dipole moment p0 is proportional
to the amplitude of incident wave. When compared to Eq.
~32!, we obtain

f
~

0 !E05
k2

4pe0
p0 . ~40!

The steady-state amplitude of an oscillating electron with a
single natural frequency v0 and damping g driven at the
frequency v gives

p05
e2

m ~

v0
22v

22ivg!

21E0 . ~41!

Using the last four equations, we obtain the index of
refraction17

n511
Ne2

2e0m~

v0
22v

22ivg!

, ~42!

which corresponds to the usual result for a dilute gas of
bound electrons. Notice that the small damping term g,
which in general depends on frequency, will cause scattering
of the beam out of the forward direction. This term is usually
neglected if the frequency is far from resonance.
Although the extinction theorem applies to macroscopic

electricity and magnetism in which the medium can be
treated as a continuum on the scale of a wavelength, we see
that an analogous extinction takes place in a medium which
is continuous on a scale much larger than a wavelength. In
this calculation, it is clear that the cancellation and replace-
ment of the incident wave by a coherent transmitted wave,
traveling in the forward direction with speed c/n , is due to
interference of the scattered radiation and the incident wave.
For the case of a continuous medium considered earlier,
however, there is the cancellation of the coherent superposi-
tion of waves traveling in directions other than forward. This
cancellation does not apply here.

V. EXTINCTION LENGTH

There has been some disagreement in the literature on the
estimation of an extinction length, that is, a distance into the
medium for which one can say that the original wave has
been replaced by the new wave with index of refraction n.
The interest in this question arises from experiments de-
signed to test Einstein’s second postulate that the speed of
light is independent of the motion of the source. For ex-
ample, one might observe an object at astronomical dis-
tances, but the question arises of whether or not the source of
the light received is the object itself or the intervening inter-
stellar medium.
As was stated earlier, the extinction theorem is a theorem

about macroscopic electrodynamics in which one averages
the fields due to all the constituents of the medium in some
volume. Thus, in all cases, there is an averaging length
which could be taken as the extinction length. In Sec. II we
treated a continuous medium in which one could say that
extinction occurs immediately upon the wave entering the
medium. But the boundary is sharp only on the scale of the
averaging length necessary for the macroscopic Maxwell’s
equations. On the other hand, the analysis of Sec. IV of the
dilute random medium suggests that an appropriate extinc-
tion length would be the ‘‘infinitesimal’’ length dz which
contains a sufficient number of particles so that averaging of
the fields makes sense. This length, as stated in the analysis,
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is much larger than the interparticle distance which is much
larger than the wavelength. The two approaches have in
common the notion that any extinction length must be large
enough for a reasonable average of the electrical properties
of the medium. Call this averaging length, extinction length
L1 .
Jackson,18 in his derivation of the macroscopic Maxwell’s

equations from the microscopic fields, makes an estimate of
the size of the minimum averaging length by noting that
reflection and refraction of visible light is adequately de-
scribed by the Maxwell’s equations with a continuous dielec-
tric constant but x-ray diffraction shows the atomic nature of
matter. He chooses a length of the order of 100 Å in ordinary
material for which a cube of that length has the order of 106
electrons and nuclei. So it seems reasonable, for both the
continuous dielectric and the dilute random medium, to
choose an averaging length such that the volume given by
the length cubed contains the order of 106 particles.
On the basis of such estimates, it seems impossible to

check Einstein’s second postulate under most circumstances
because of the extinction due to any intervening material.
But is the length L1 the correct length to use?
Jackson12 calculates an ‘‘extinction’’ length based on the

interpretation that the extinction is caused by a dipole layer
on the boundary of the medium.1,3 He then looks for a dis-
tance into the medium where the vacuum wave and the me-
dium wave get significantly out of phase ~of order one! and
obtains a length L2 ,

L25
k

2pNu f
~

0 !u
5

l

2pun21u
, ~43!

where the index of refraction is taken real but may be less
than one. This result has been criticized because the interpre-
tation that the extinction is caused by a boundary layer is a
mathematical artifact due to the changing of a volume inte-
gral into a surface integral.
The general view is that the extinction is due to all the

oscillating dipoles throughout the volume of the dielectric.
Furthermore, this length, L2 , does not appear to be related to
the extinction theorem itself since it is so much longer than
L1 , the distance needed for averaging the properties of the
medium. As will be seen below, however, the length L2 can
be interpreted as the distance in which that portion of the
beam that has not interacted with the medium is down by the
factor (1/e).
The notion of an ‘‘extinction’’ distance suitable for the

interpretation of experiments testing the second postulate re-
lies on the picture of the progression of the wave into the
medium, interacting with the medium as it goes, until the
medium itself must be considered the sole source of the ra-
diation. The extinction theorem of Sec. II, however, deals
with stationary waves and so is not suitable for the analysis
of this situation. But the formalism for a dilute medium in
Sec. IV, based on the idea of repeated scattering of the light
as it progresses into the medium, may give us the insight
necessary to calculate an appropriate length in which most of
the incident radiation has interacted with the medium. Cer-
tainly it would not be dz or equivalently L1 , the distance
needed for averaging, since, in order to neglect double scat-
tering, it is assumed that only a negligible fraction of the
incident wave has been scattered in such a distance.
Suppose the velocity of the radiation in an experimental

setup depends on the velocity of the source and is not c.

Then the radiation, in passing through a stationary medium,
may become extinguished in the process of the forward co-
herent scattering so that the radiation exiting the medium in
the forward direction will be completely scattered radiation.
Therefore, measurement of the velocity will yield c since the
source of the radiation is the stationary medium. In this case
we can estimate a length in which most of the beam has
interacted with the medium by following the arguments of
Filippas and Fox.19 The beam traveling through the medium
will consist of two components, the component scattered in
the forward direction traveling at speed c and the unscattered
component ~incident wave! at a speed different than c. Note
that in Sec. IV, both of these components travel with speed c
and it is their interference which gives the refracted wave
traveling at speed c/n . Now if the two components of the
beam, both in the forward direction, can be differentiated on
the basis of speed, then it makes sense to talk about the
decrease of the incident beam with distance into the medium.
The unscattered fraction of the incident wave can then be
measured by itself and its amplitude will decrease exponen-
tially. From Eq. ~35! we deduce that the fractional change in
the amplitude of the incident wave will be20

2un21ukdz ~44!

in traveling a distance dz through the medium. Here f (0) is
written in terms of the index of refraction given in Eq. ~38!.
This fractional change implies that the scattering results in

an exponential decrease, exp
@

2un21ukz
#

, of the component
consisting of the incident wave. This may be used to estimate
a distance in which the amplitude of this component has
been reduced to 1/e of its original value. This e-folding dis-
tance is identical to L2 , the ‘‘extinction’’ length given by
Jackson. It should again be emphasized that the above result
depends on detection that separates the unscattered from the
scattered wave by their different velocities since both waves
move in the forward direction.
Filippas and Fox find the length L2 ~divided by 2 since

they calculated the distance in which the intensity rather than
the amplitude of the component that has not interacted with
the medium is reduced by 1/e! for 0.5 MeV g rays to be 19
cm in air and 0.3 mm in lucite. With these results they criti-
cize several experiments purporting to support Einstein’s
second postulate since, in these experiments, the intervening
medium was of the order of three or more e-folding lengths.
Before concluding this section we define another extinc-

tion length based on the Rayleigh scattering coefficient for
which the total intensity is down by a factor of 1/e . We
assume that any damping of the oscillating dipoles is due to
radiative reaction. Then, for a random medium, the intensity
of the beam will exponentially decrease with distance as en-
ergy is scattered out of the forward direction. The reciprocal
of the Rayleigh scattering coefficient21 will give the distance
into the medium for which the intensity of the beam is down
by the factor 1/e . We have

L356pN
~

c/v!

4 n
~

n221 !

2 , ~45!

valid for frequencies far from resonance, uv2v0u@g/2. In
this equation, n is the real part of the index of refraction.
To compare the lengths L2 and L3 , take the case of a

dilute gas of unbound or weakly bound electrons with index
of refraction given by Eq. ~42!. To lowest order in N,
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L251/~lNr0!, ~46!

where r0 is e2/(4pe0mc2), the classical radius of the elec-
tron, and

L351/~NsT!, ~47!

where sT is 8pr0
2/3, the Thomson cross section. Notice that

L3 is the length of a column of particles for which the sum of
the cross sections of the particles equals the cross-sectional
area of the column. Therefore, unlike the distance L2 , at the
distance L3 we would expect that all of the radiation has
interacted with the medium.
The length L3 , as given in Eq. ~47!, can be obtained by

noting that a complex index of refraction will cause an ex-
ponential decay of the beam with distance. This comes from
the spatial dependence of the wave as exp

@

inkz
#

where k is
the wave number in vacuum. From the index of refraction,
Eq. ~42!, with the radiative damping22 given by g

52r0v2/3c , one can easily obtain Eq. ~47!. The reader may
have noticed the peculiarity that this calculation relies on the
imaginary part of the index of refraction while the Rayleigh
formula depends only on the real part. But the real and
imaginary parts are related through causality.23
As a numerical example, compare the two lengths for vis-

ible light of wavelength 5000 Å. Then, in meters, L2 is 7.1
31012/N while L3 is 1.531020/N , where N is the number of
electrons per cubic meter. It is apparent that the distance for
the intensity of the beam to decrease to 1/e of its original
value is much, much, greater than the distance for which all
but 1/e of the incident radiation has interacted with the me-
dium. There is no appreciable change in the intensity in the
distance L2 .

VI. CONCLUSION

We have given an elementary demonstration of the extinc-
tion theorem using only the macroscopic fields. This should
be more accessible to undergraduates since it relies only on
the principle of superposition and the solution of the wave
equation. At a more advanced level we have also found a
solution in the form of an integral equation which helps to
relate our work with earlier studies. We also study the case
of short wavelength in a random medium and here it is easy
to see how extinction results from the interference of the
incident wave and the scattered wave. Finally, we discuss the
notion of extinction length which appears to have several
different meanings. The extinction length L1 associated with
the theorem is simply the averaging distance necessary to
discuss macroscopic fields. But another length, L2 , can be
defined as the depth within the medium at which one can say
that most of the incident wave has interacted with the me-
dium. Such a question only makes sense if that portion of the
wave that has interacted with the medium can be distin-
guished from the incident wave. But that is the hypothesis of
experiments to test the second postulate of Einstein. This
length is much larger than the averaging length and is agree-
ment with the ‘‘extinction’’ length given by Jackson. For a

dilute random medium one can define a third length, L3 , in
which the forward intensity of the beam is down by the fac-
tor 1/e due to scattering out of the forward direction. This
length is many orders of magnitude greater than L2 .
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